BIOMONITORING OF THE SAN LUIS DRAIN

A Review: 1997-2010

David Block, Ph.D.

Block Environmental Services, Inc. Pleasant Hill, CA

Monitoring Program Components

- Water Quality
 - Selenium, boron, conductivity, etc...
- Biological Monitoring
 - Body burdens in fish and invertebrate community
- Sediment
 - Selenium, TOC, volume analysis
- Physical Measurements
 - Flow Rates
- Toxicity

Toxicity Program Objective

e toxicity testing to evaluate potential pact of SLD discharge on biota

drainage water toxic at point of discharge?

drainage water toxic downstream of scharge?

Toxicity Program Overview

```
ase I (Oct. 1997 - Sept. 2001)
Laboratory Toxicity Tests – quarterly (monthly)
n-situ toxicity tests – quarterly
Concurrent selenium and sulfate water analysis
ase II (Oct. 2001 - Dec. 2009)
Laboratory Toxicity Tests - quarterly (monthly)
Concurrent selenium water analysis
ase III (Jan. 2010 – Dec. 2019)
Currently same as Phase II
```

Toxicity Tests

asures the <u>NET</u> effect of toxicants ot just selenium

oratory (USEPA Methodologies)

- hort Term Chronic Bioassays with three trophic levels
- > Invertebrate → Water flea (*Daphnia magna*)
- Vertebrate → Fathead minnow larvae (Pimephales promelas)
- Plant → Green Algae (Selenastrum capricornutum)

Test Organisms

Daphnia magna

Green Alga

Test Design and Endpoints

hnia magna – Survival and Reproduction lead minnow larvae – Survival and Growth en Algae - Growth

% site water used for all sites tion series (100, 75, 50, 25, 12.5%) for Site B algaes since 1999.

er renewed each day for water flea and fish tests; renewed in algal tests

Water Quality Monitoring

- elenium
- ulfate
- emperature
- C
- issolved Oxygen
- Н
- alinity

- Ammonia
- Chlorine
- Hardness
- Alkalinity
- Total Suspended Solids

Station Locations

- e C Mud Slough upstream of SLD charge
- e B SLD at new bridge
- e D Mud Slough downstream of SLD
- e F Salt Slough near hwy 165
- To document environmental improvements
- IC Delta Mendota Canal
- Control Site

Toxicity Data

October 1997 through December 2010

ercent of Toxic Events by Site

n=171	Site C	Site B	Site D	Site F
ia Survival	2.3	3.5	2.3	<1
ia Reproduction	2.3	5.8	4.1	4.1
d Minnow Survival	14.6	0	12.3	7
d Minnow Growth	17.5	7.6	10.5	9.4
Frowth	8.2	44.4	19.9	19.9

Site C

Site C: Toxicity by Endpoint

Site B

Site B: Toxicity by Endpoint

Site D

Site D: Toxicity by Endpoint

Site F

Site F: Toxicity by Endpoint

Site B: Definitive Algal Tests

Total number of Tests with NOEC or LOEC <100

=124	NOEC	LOEC
100%	64	82
75%	15	8
50%	11	11
25%	11	10
12.50%	10	11
<12.5%	13	2

Trends Per 12-Month Period

hnia – Toxicity occurs primarily in ing/summer

esticides? TIEs inconclusive

head Minnow – Toxicity occurs primarily in ter months

urbidity? Run-off?

ae - Toxicity occurs throughout year

Trends, Cont.

cicity highest in 2002-2003 followed by unward trend at all sites

h Frequency of Algal Toxicity at Site B (3 to rents per year)

enium – Does not appear to be correlation selenium concentrations and toxicity

Conclusions

drainage water toxic at point of discharge?

Toxicity in SLD is comparable with upstream of convergence zone with mud slough, except for algae

drainage water toxic downstream of scharge?

Toxicity upstream and and downstream of SLD in nud slough are comparable, except for algae

Additional Testing

Sediment toxicity

IEs on SLD water when algae tests lemonstrate toxicity

ncreased scope of monitoring may lead or reduced toxicity monitoring frequency